2024 AP Calculus AB Free Response Questions Section II, Part A (30 minutes) # of questions: 2

A graphing calculator may be used for this part.

- 1. The temperature of coffee in a cup at time t minutes is modeled by a decreasing differentiable function C , where $C(t)$ is measured in degrees Celsius. For $0 \le t \le 12$, selected values of $C(t)$ are given in the table above.
	- (a) Approximate $C'(5)$ using the average rate of change of C over the interval $3 \le t \le 7$. Show the work that leads to your answer and include units of measure.
	- (b) Use a left Riemann sum with the three subintervals indicated by the table to approximate the value of $\int_0^{12} C(t) dt$. Interpret the meaning of $\frac{1}{12} \int_0^{12} C(t) dt$ in the context of the problem.
	- (c) For $12 \le t \le 20$, the rate of change of the temperature of the coffee is modeled by $C'(t) = \frac{24.55e^{0.01t}}{t}$ $\frac{e^{\cos 2t}}{t}$, where $C'(t)$ is measured in degrees Celsius per minute. Find the temperature of the coffee at time $t = 20$. Show the set up for your calculations.
	- (d) For the model defined in part (c), it can be shown that $C''(t) = \frac{24.55e^{0.01}}{t^2}$ $\frac{(100-t)}{t^2}$. For $12 < t < 20$, determine whether the temperature of the coffee is changing at a decreasing rate or at an increasing rate. Give a reason for your answer.

(a)
$$
C'(5) = \frac{C(7) - C(3)}{7 - 3} = \frac{69 - 85}{4} = -\frac{16}{4} = -\frac{4}{4} \cdot C/min
$$

- (b) $\int_0^{12} C(t) dt = 3(100) + 4(85) + 5(69) = 985$ This is the average value of $C(t)$ on the interval $0 \le t \le 12$ – the average temperature of the coffee, in C , for the first 12 minutes.
- (c) $C(20) = 55 + \int_{12}^{20} \frac{-24.55e^{0.01t}}{t}$ ௧ $rac{^{20}-24.55e^{0.01t}}{t}dt = 40.329^{\circ}$ C.
- (d) For $12 \le t \le 20$, $C''(t) < 0$: the numerator will be positive (the exponential is positive, 100−t is positive, and 24.55 their product will be positive). The denominator $t^2 > 0$ for all $t \neq 0$. Therefore, $C''(t)$ will be positive, therefore C' is increasing.
- 2. A particle moves along the x-axis so that its velocity at time $t \ge 0$ is given by $v(t) = \ln(t^2 4t + 5) 0.2t$.
	- (a) There is one time, $t = t_R$, in the interval $0 \lt t \lt 2$ when the particle is at rest (not moving). Find t_R . For $0 \lt t \lt t_R$, is the particle moving to the right or to the left? Give a reason for your answer.
	- (b) Find the acceleration of the particle at time $t = 1.5$. Show the setup for your calculations. Is the speed of the particle increasing or decreasing at time $t = 1.5$? Explain your reasoning.
	- (c) The position of the particle at time t is $x(t)$, and its position at time $t = 1$ is $x(1) = -3$. Find the position of the particle at time $t = 4$. Show the setup for your calculations.
	- (d) Find the total distance traveled by the particle over the interval $1 \le t \le 4$. Show the setup for your calculations.
- (a) At rest when $v(t) = 0$: $ln(t^2 4t + 5) 0.2t = 0$ Graphing the function (window $[0,2,1]$, $[-3, 3, 1]$), we get the graph to the right. Tracing the x−intercept, we get $x = 1.426$.

Since $v(t)$ is above the x−axis ($v(t) > 0$, the particle is moving (to the right.

- (b) $a(t) = v'(t) \to a(1.5) = \frac{d}{dt}$ $\frac{d}{dt}$ [ln(t² – 4y + 5) – 0.2t]_{t=1.5} = -0.99999 = -1 Since $v(1.5) < 0$ and $a(1.5) < 0$, then the speed is increasing.
- (c) $x(4) = x(1) + \int_{1}^{4} v(t)$ $\int_{1}^{4} v(t) dt = -2.803$ units
- (d) $X_{tot}(t) = \int_1^4 |v(t)| dt$ (0.958 units)

Section II, Part B (1 hour) # of questions: 4 A graphing calculator may NOT be used for this part.

 $\overline{2}$

 $\overline{\mathbf{3}}$

 $\dot{5}$

 $\overline{4}$

 \overline{o}

- 3. The depth of seawater at a location can be modeled by the function H that satisfies the differential equation dН $\frac{dH}{dt} = \frac{1}{2}$ $\frac{1}{2}(H-1)\cos\left(\frac{t}{2}\right)$ $\frac{1}{2}$, where $H(t)$ is measured in feet and t is measured in hours after noon (t = 0). It is known that $H(0) = 4$.
	- (a) A portion of the slope field for the differential equation is provided. Sketch the solution curve, $y = H(t)$, through the point (0, 4).
	- (b) For $0 < t < 5$, it can be shown that $H(t) > 1$. Find the value of t, for $0 \le t \le 5$, at which H has a critical point. Determine whether the critical point corresponds to a relative minimum, a relative maximum, or neither a relative minimum nor a relative maximum of the depth of seawater at the location. Justify your answer.
	- (c) Use separation of variables to find $y = H(t)$, the particular solution to the differential equation

$$
\frac{dH}{dt} = \frac{1}{2}(H-1)\cos\left(\frac{t}{2}\right)
$$

with initial condition $H(0) = 4$.

- (a) See graph.
- (b) $\frac{dH}{dt} = \frac{1}{2}$ $\frac{1}{2}(H-1)\cos\left(\frac{t}{2}\right)$ $\left(\frac{t}{2}\right) = 0$ $H = 1$ cos $\frac{t}{2}$ $\frac{t}{2} = 0 \rightarrow \frac{t}{2}$ π 3π $\frac{3\pi}{2}$, ... $\to t = \pi$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, ... 10 $\frac{1}{2}$ $\frac{1}{2}$, The only solution is at $\widehat{t} = \pi$. For $0 < t < \pi$: $\cos \frac{t}{2} > 0$: increasing For $t > \pi$: $\cos \frac{t}{2} < 0$: decreasing $\left(\rightarrow it \text{ is a rel max}\right)$ (c) $\frac{dH}{dt} = \frac{1}{2}$ $\frac{1}{2}(H-1)\cos\left(\frac{t}{2}\right)$ $\frac{1}{2}$ $\frac{dH}{H-1} = \frac{1}{2}$ $rac{1}{2}$ cos $\left(\frac{t}{2}\right)$ $\frac{1}{2}$ dt $\int \frac{dH}{H-1} = \frac{1}{2}$ $\frac{1}{2} \int \cos \left(\frac{t}{2} \right)$ $\frac{1}{2}$ dt $\ln |H - 1| = \sin \left(\frac{t}{2} \right)$ $\left(\frac{c}{2}\right) + C$ at t = 0: $\ln|4 - 1|$ = sin 0 + $C \rightarrow C$ = ln 3 $\ln |H - 1| = \sin \left(\frac{t}{2} \right)$ $\frac{t}{2}$ + ln 3 → H - 1 = $\pm e^{\sin(\frac{t}{2}) + \ln 3}$ → H = 1 $\pm 3e^{\sin(\frac{t}{2})}$ Since $H(0) = 4$: $(H(t) = 1 + 3e^{\sin(\frac{t}{2})})$

- 4. The graph of the differentiable function f, shown for $-6 \le x \le 7$, has a horizontal tangent at $x = -2$ and is linear for $0 \le x \le 7$. Let R be the region in the second quadrant bounded by the graph of f, the vertical line $x = -6$, and the x- and y−axes. Region R has an area of 12.
	- (a) The function g is defined by $g(x) = \int_0^x f(t) dt$. Find the values of $g(-6)$, $g(4)$, and $g(6)$.
	- (b) For the function g defined in part (a), find all values of x in the interval $0 \le x \le 6$ at which the graph of g has a critical point. Give the reason for your answer.
	- (c) The function h is defined $h(x) = \int_{-6}^{x} f'(t) dt$ Find the values of $h(6)$, $h'(6)$, and $h''(6)$. Show the work that leads to your answer.

(a)
$$
g(-6) = \int_0^{-6} f(t) dt = -\int_{-6}^0 f(t) dt = -12
$$

\n $g(4) = \int_0^4 f(t) dt = \frac{1}{2} (2)(4) \in 4$ (Use the area of a triangle)
\n $g(6) = \int_0^4 f(t) dt + \int_4^6 f(t) dt = 4 - \frac{1}{2} (1)(2) \in 3$

(b) The graph of f is also the graph of g'(x), therefore, where it crosses the x−axis is a critical point. This occurs at $x = 4$. Since it crosses from positive to negative, $x = 4$ is a relative maximum.

(c)
$$
h(6) = \int_{-6}^{6} f'(t) dt = 12 + 3 \left(\frac{15}{15}\right)
$$

\n $h'(6) = \frac{d}{dx} \int_{-6}^{6} f'(t) dt = \text{slope of line} \rightarrow \frac{-1 - 2}{6} = -\frac{3}{6} = \left(-\frac{1}{2}\right)$
\n $h''(6) = f''(6) = 0 \rightarrow h'(x)$ is a constant from $0 < x < 7$, therefore $h''(6) = 0$

- 5. Consider the curve defined by the equation $x^2 + 3y + 2y^2 = 48$. It can be shown that $\frac{dy}{dx} = \frac{-2x}{3+4y}$ $\frac{-2x}{3+4y}$.
	- (a) There is a point on the curve near $(2, 4)$ with x-coordinate 3. Use the line tangent to the curve at $(2, 4)$ to approximate the y−coordinate of this point.
	- (b) Is the horizontal line $y = 1$ tangent to the curve? Give a reason for your answer.
	- (c) The curve intersects the positive x−axis at the point $(\sqrt{48}, 0)$. Is the line tangent to the curve at this point vertical? Give a reason for your answer.
	- (d) For time $t \ge 0$, a particle is moving along another curve defined by the equation $y^3 + 2xy = 24$. At the instant the particle is a point (4,2), the y−coordinate of the particle's position is decreasing at a rate of 2 units per second. At that instant, what is the rate of change of the x−coordinate of the particle's position with respect to time?

(a)
$$
\frac{dy}{dx} = -\frac{2x}{3+4y} \rightarrow \text{At } (2,4): \frac{dy}{dx} = -\frac{4}{3+16} = -\frac{4}{19} \rightarrow y - 4 = -\frac{4}{19}(x - 2) \rightarrow y = -\frac{4}{19}x + \frac{84}{19}
$$

\nat $x = 3: y = -\frac{12}{19} + \frac{84}{19} = \frac{72}{19}$
\n(b) At $y = 1: x^2 + 3 + 2 = 48 \rightarrow x^2 = 43 \rightarrow x = \pm \sqrt{43}$
\n $\frac{dy}{dx} = -\frac{2x}{7} = 0 \rightarrow x = 0 \quad 0^2 + 3(1) + 2(1)^2 = 48? \text{ (NO)}$
\n(c) At $(\sqrt{48}, 0): \frac{dy}{dx} = -\frac{2(\sqrt{48})}{3+4(0)} = -\frac{2\sqrt{48}}{3} \rightarrow \text{[Not vertical]}$
\n(d) $3y^2 \frac{dy}{dt} + 2\left[x\frac{dy}{dt} + y\frac{dx}{dt}\right] = 0$

(d)
$$
3y^2 \frac{dy}{dt} + 2\left[x\frac{dy}{dt} + y\frac{dx}{dt}\right] = 0
$$

\n $3y^2 \frac{dy}{dt} + 2x \frac{dy}{dx} + 2y \frac{dx}{dt} = 0$
\n $At (4,2), \frac{dy}{dt} = -2$: $3(2)^2(-2) + 2(4)(-2) + 2(2)\frac{dx}{dt} = 0$
\n $-24 - 16 + 4\frac{dx}{dt} = 0$
\n $4\frac{dx}{dt} = 40 \rightarrow \frac{dx}{dt} = 10$

- 6. The functions f and g are defined by $f(x) = x^2 + 2$ and $g(x) = x^2 2x$, as shown in the graph.
	- (a) Let R be the region bounded by the graphs of f and g, from $x = 0$ to $x = 2$, as shown in the graph. Write, but do not evaluate, an integral expression that gives the area of the region R.
	- (b) Let S be the region bounded by the graph of g and the x−axis, from $x = 2$ to $x = 5$, as shown in the graph. Region S is the base of a solid. For this solid, at each x the cross section perpendicular to the x −axis is a rectangle with height equal to half its base in region S. Find the volume of the solid. Show the work that leads to your answer.
	- (c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when region S, as described in part (b), is rotated about the horizontal line $y = 20$.

- (a) $A = \int_0^2 [f(x) g(x)]$ $\int_0^2 [f(x) - g(x)] dx = \int_0^2 [2x + 2] dx$
- (b) Base: $b(x) = g(x) = x^2 2x$

Cross Section: Rectangle – A = bh → $A(x) = (x^2 - 2x)(\frac{1}{2})$ $\frac{1}{2}(x^2-2x)=\frac{1}{2}$ $\frac{1}{2}(x^2-2x)^2$ ହ

$$
V(x) = \frac{1}{2} \int_{2}^{5} (x^4 - 4x^3 + 4x^2) dx = \frac{1}{2} \left[\frac{x^5}{5} - x^4 + \frac{4x^3}{3} \right]_{2}^{5} = \frac{1}{2} \left[\left(625 - 625 + \frac{500}{3} \right) - \left(\frac{32}{5} - 16 + \frac{32}{3} \right) \right]
$$

\n
$$
V = \frac{1}{2} \left(\frac{500}{3} - \frac{96 - 240 + 160}{15} \right) = \frac{1}{2} \left(\frac{2500}{15} - \frac{16}{15} \right) = \frac{1}{2} \left(\frac{2484}{15} \right) = \frac{1242}{15} = \frac{414}{5}
$$

(c)
$$
V = \pi \int_a^b R^2 - r^2 dx = \pi \int_2^5 [(20^2) - (20 - g(x))^2] dx
$$

