5.1 Verifying Trigonometric Identities

Def: An identity is an equation that is always true regardless of the value(s) substituted.

Fundamental Identities for Trigonometry (Please MEMORIZE!)

Reciprocal Identities:

$$
\begin{array}{lll}
\sin x=\frac{1}{\csc } & \cos x=\frac{1}{\sec x} & \tan x=\frac{1}{\cot x} \\
\csc x=\frac{1}{\sin x} & \sec x=\frac{1}{\cos x} & \cot x=\frac{1}{\tan x}
\end{array}
$$

Quotient Identities:

$$
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}
$$

Pythagorean Identities:

$$
\sin ^{2} x+\cos ^{2} x=1 \quad * * \text { The most important identity of them all } * *
$$

$$
1+\tan ^{2} x=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x
$$

Even/Odd Identities:

$$
\begin{array}{lll}
\sin (-x)=-\sin x & \cos (-x)=\cos x & \tan (-x)=-\tan x \\
\csc (-x)=-\csc x & \sec (-x)=\sec x & \cot (-x)=-\cot x
\end{array}
$$

These Fundamental Identities are used to verify (or prove) any identity.

Ex. Prove: $\sec x \cot x=\csc x$

Ex. Prove: $\cos x-\cos x \sin ^{2} x=\cos ^{3} x$

Prove: $\sin x \tan x+\cos x=\sec x$

$$
\text { Prove: } \frac{1+\sin }{\cos x}=\sec x+\tan x
$$

Ex. Prove: $\frac{\sin x}{1+\cos }=\frac{1-\cos }{\sin x}$
Prove: $\frac{\cos x}{1+\sin }+\frac{1+\sin x}{\cos x}=2 \sec x$

Prove: $\frac{1}{1+\cos }+\frac{1}{1-\cos x}=2+2 \cot ^{2} x$

You are allowed to:

- Combine terms
- Multiply factors
- Use other known identities
- Separate terms
- Factor
- Simplify radicals
- Change to sines and cosines
- You may not "move" any function from one side to the other
- You may only add 0 or multiply/divide by 1
- These will be in "disguise"

Advice

- Work on one side of the identity until you can't go any further. Then work on other side.
- DO NOT MOVE ANYTHING FROM ONE SIDE TO THE OTHER.
- DO NOT MULTIPLY/DIVIDE ON BOTH SIDES

5.2 Sum and Difference Formulas

Th: Sum and Difference Formulas: Given two angles, α and β, then the following formulas are true:

Sum Formulas	Difference Formulas
$\sin (\alpha+\beta)=\sin \alpha \cos +\cos \alpha \sin \beta$	$\sin (\alpha-\beta)=\sin \alpha \cos -\cos \alpha \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \operatorname{co}-\sin \alpha \sin \beta$	$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$	$\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

Ex. Find the exact value of each of the following:
Hint: $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$

1. $\sin 15^{\circ}$
2. $\cos 75^{\circ}$
3. $\sin \frac{7 \pi}{12}$
4. $\cos 80^{\circ} \cos 20^{\circ}+\sin 80^{\circ} \sin 20^{\circ}$
5. $\tan 105^{\circ}$

Ex. Prove the identity: $\frac{\cos (x-y)}{\sin x \cos y}=\cot x+\tan y$

Ex. Suppose x is an angle in Quadrant II with $\sin x=\frac{12}{13}$ and y is an angle in Quadrant I with $\cos y=-\frac{3}{5}$, find each of the following
(a) $\sin y$
(b) $\cos x$
(c) $\sin (x+y)$
(d) $\cos (x-y)$

Ex. Prove the identity: $\tan \left(x-\frac{\pi}{4}\right)=\frac{\tan x-1}{\tan x+1}$

Ex. Prove the identity: $\frac{\cos (x+y)}{\cos x \cos y}=1+\tan x \tan y$

5.3 Double Angle Formulas \& Half-Angle Formulas

Ex. Using the formula for the $\sin (x+y)$, write an expression equivalent to $\sin 2 x$

Ex. Using the formula for the $\tan (x+y)$, write an expression equivalent to $\tan 2 x$

Ex. Using the formula for the $\cos (x+y)$, write an expression equivalent to $\cos 2 x$.

Ex. Write 2 other expressions equivalent to $\cos 2 x$.

Ex. If $\sin \theta=\frac{5}{13}$, and θ lies in quadrant II, find the exact value of each of the following:
(a) $\sin 2 \theta$
(b) $\cos 2 \theta$
(c) $\tan 2 \theta$

Ex. Find the exact value of (a) $\frac{2 \tan 15^{\circ}}{1-\tan ^{2} 15^{\circ}} \quad$ (b) $\cos ^{2} 15-\sin ^{2} 15 \quad$ (c) $\cos 112.5^{\circ}$

Th: Power-Reducing Formulas

$$
\sin ^{2} x=\frac{1-\cos }{2} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2} \quad \sin ^{2} x=\frac{1-\cos }{1+\cos }
$$

These formulas lead us to the following:

Def: Half-Angle Formulas:

1. $\sin \frac{1}{2} x= \pm \sqrt{\frac{1-\cos }{2}}$
2. $\cos \frac{1}{2} x= \pm \sqrt{\frac{1+\cos x}{2}}$
3. $\tan \frac{1}{2} x= \pm \sqrt{\frac{1-\cos }{1+\cos }}$

The \pm in the formula indicates you must determine the sign of the expression. The sign is based on the quadrant that the

HALF-ANGLE LIES IN.

Ex. Find the exact value of $\cos 112.5^{\circ}$
ex. What is the exact value of $\cos 105^{\circ}$

Ex. Prove the identity: $\tan x=\frac{1-\cos }{\sin 2}$

5.4 Product-to-Sum and Sum-to-Product Formulas

We can express a product of sines and cosines as sums and differences:

> Th: Product-To-Sum Formulas $$
\begin{array}{l}\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)] \\ \cos x \cos y=\frac{1}{2}[\cos (x-y)+\cos (x+y)] \\ \sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)] \\ \cos x \sin y=\frac{1}{2}[\sin (x+y)-\sin (x-y)]\end{array}
$$

Th: Sum-to-Product Formulas
$\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
$\sin x-\sin y=2 \sin \frac{x-y}{2} \cos \frac{x+y}{2}$
$\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$
$\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$

Ex. Express each of the following as a sum or difference:

1. $\sin 8 x \sin 3 x$
2. $\cos 7 x \cos x$

Ex. Express each sum or difference as a product

1. $\sin 9 x+\sin 5 x$
2. $\cos 4 x-\cos 3 x$

Ex. Prove the identity: $\frac{\cos 3 x-\cos 5 x}{\sin 3 x+\sin 5}=\tan x$

5.5 Trigonometric Equations

Solving Trig Equations is exactly the same as solving an equation with a variable, with one added step:

$$
\left.\begin{array}{rl}
\text { Solve for } x & \begin{array}{rl}
\text { Solve for } x \\
2 x-1 & =0
\end{array} \\
2 \sin x-1=0 \\
2 x & 2 \sin x=1
\end{array}\right\}
$$

The difference between the two is that on the right side, you have solved for $\sin \mathrm{x}$. You want to find x . You need to go another step.

- You are looking for the angle whose sine is $1 / 2$
- Use QRS to help...
$\sin x=\frac{1}{2}$
Q:
R:
$S: \longleftarrow$ You get S first...it is positive since $1 / 2$ is not $-1 / 2$
- Now that you know S, you ask, "What quadrants is sin positive?
- Quadrants I and II
- Calculate R: The angle whose \sin is $1 / 2$? (Ignore + or - now)
- 30°
- You can use your calculator to measure
- Then calculate the angle in each quadrant based on the reference angle: Quad I: 30
Quad II: $180-30=150$
So $x=30$ and 150
Examples: Solve

1. $3 \sin x-2=5 \sin x-1$
2. $\tan 3 x=1,0 \leq x \leq 2 \pi$
3. $\sin \frac{x}{2}=\frac{\sqrt{3}}{2}$
4. $\sin \frac{x}{3}=\frac{1}{2}$

The equation may involve a quadratic or more than one trig function. If more than one trig function is involved, use the appropriate identity or formula to substitute:

Ex. Solve each of the following for $0 \leq x \leq 2 \pi$

1. $4 \sin ^{2} x-1=0$
2. $\cos ^{2} x+3 \cos x-1=0$
3. $3 \sin x=2 \cos ^{2} x$
4. $\cos 2 x+\cos x=0$
5. $\tan x \sin ^{2} x=3 \tan x$
6. $2 \cos 2 x \sin 2 x+\cos 2 x=0$
7. $2 \cos ^{2} x+3 \sin x=0$
8. $\cos 2 x+3 \sin x-2=0$
9. $\sin x \cos x=\frac{1}{2}$
10. $\sin x-\cos x=1$

If the angle is not a known value, use the inverse trig functions on your calculator to get the angle.

