<u>Def</u>: An *identity* is an equation that is always true regardless of the value(s) substituted.

Ex.	Prove:	sin x	_	1-cos
		1+cos	_	sin x

Prove:
$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = 2 \sec x$$

Prove:
$$\frac{1}{1+\cos} + \frac{1}{1-\cos x} = 2 + 2\cot^2 x$$

You are allowed to:

- Combine terms
- Multiply factors
- Use other known identities
- Separate terms Factor
- Simplify radicals
- Change to sines and cosines • You may not "move" any function from one side to the other
- You may only add 0 or multiply/divide by 1
- These will be in "disguise"

Advice

- Work on one side of the identity until you can't go any further. Then work on other side.
- DO NOT MOVE ANYTHING FROM ONE SIDE TO THE OTHER.
- DO NOT MULTIPLY/DIVIDE ON BOTH SIDES

5.2 Sum and Difference Formulas

<u>Th</u>: Sum and Difference Formulas: Given two angles, α and β , then the following formulas are true:

Sum Formulas	Difference Formulas
$\sin(\alpha + \beta) = \sin \alpha \cos + \cos \alpha \sin \beta$	$\sin(\alpha - \beta) = \sin \alpha \cos - \cos \alpha \sin \beta$
$\cos(\alpha + \beta) = \cos \alpha co - \sin \alpha \sin \beta$	$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$	$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$

 $\underline{\text{Hint}}: \frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$

3. $\sin \frac{7\pi}{12}$

Ex. Find the exact value of each of the following:

1. sin 15° 2. cos 75°

4. $\cos 80^{\circ} \cos 20^{\circ} + \sin 80^{\circ} \sin 20^{\circ}$ 5. $\tan 105^{\circ}$

Ex. Prove the identity: $\frac{\cos(x-y)}{\sin x \cos y} = \cot x + \tan y$

Ex. Suppose x is an angle in Quadrant II with $\sin x = \frac{12}{13}$ and y is an angle in Quadrant I with $\cos y = -\frac{3}{5}$, find each of the following (a) $\sin y$ (b) $\cos x$ (c) $\sin(x + y)$ (d) $\cos(x - y)$

Ex. Prove the identity: $\tan\left(x - \frac{\pi}{4}\right) = \frac{\tan x - 1}{\tan x + 1}$

Ex. Prove the identity: $\frac{\cos(x+y)}{\cos x \cos y} = 1 + \tan x \tan y$

5.3 Double Angle Formulas & Half-Angle Formulas

Ex. Using the formula for the sin (x+y), write an expression equivalent to sin 2x

Ex. Using the formula for the tan (x+y), write an expression equivalent to tan 2x

Ex. Using the formula for the $\cos(x+y)$, write an expression equivalent to $\cos 2x$.

Ex. Write 2 other expressions equivalent to $\cos 2x$.

Ex. If $\sin \theta = \frac{5}{13}$, and θ lies in quadrant II, find the exact value of each of the following:

(a) $\sin 2\theta$ (b) $\cos 2\theta$ (c) $\tan 2\theta$

Ex. Find the exact value of (a) $\frac{2 \tan 15^{\circ}}{1 - \tan^2 15^{\circ}}$ (b) $\cos^2 15 - \sin^2 15$ (c) $\cos 112.5^{\circ}$

Ex. Prove the identity: $\cos 3x = 4\cos^3 x - 3\cos x$

Th: Power-Reducing Formulas

$$\sin^2 x = \frac{1-\cos 2x}{2}$$
 $\cos^2 x = \frac{1+\cos 2x}{2}$ $\sin^2 x = \frac{1-\cos 2x}{1+\cos 2x}$

These formulas lead us to the following:

Def: Half-Angle Formulas:

1.	$\sin\frac{1}{2}x = \pm\sqrt{2}$	$\frac{1-\cos}{2}$
2.	$\cos\frac{1}{2}x = \pm \sqrt{2}$	$\frac{1+\cos x}{2}$
3.	$\tan\frac{1}{2}x = \pm \sqrt{2}$	$\frac{1-\cos}{1+\cos}$

Ex. Find the exact value of $\cos 112.5^{\circ}$

The \pm in the formula indicates you must determine the sign of the expression. The sign is based on the quadrant that the

HALF-ANGLE LIES IN.

ex. What is the exact value of cos 105°

Ex. Prove the identity:
$$\tan x = \frac{1-\cos x}{\sin x}$$

Homework: Pg. 614 - 615 #4 - 68(4's), 69,70

5.4 Product-to-Sum and Sum-to-Product Formulas

We can express a product of sines and cosines as sums and differences:

Th: Product-To-Sum Formulas	Th: Sum-to-Product Formulas	
$\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$	$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$	
$\cos x \cos y = \frac{1}{2} [\cos(x-y) + \cos(x+y)]$	$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2}$	
$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$	$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$	
$\cos x \sin y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$	$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$	

Ex. Express each of the following as a sum or difference:

1. $\sin 8x \sin 3x$ 2. $\cos 7x \cos x$

Ex. Express each sum or difference as a product

1. $\sin 9x + \sin 5x$ 2. $\cos 4x - \cos 3x$

Ex. Prove the identity: $\frac{\cos 3x - \cos 5x}{\sin 3x + \sin 5} = \tan x$

5.5 Trigonometric Equations

Solving Trig Equations is exactly the same as solving an equation with a variable, with one added step:

Solve for xSolve for x
$$2x-1=0$$
 $2\sin x - 1 = 0$ $2x = 1$ $2\sin x = 1$ $x = \frac{1}{2}$ $\sin x = \frac{1}{2}$

The difference between the two is that on the right side, you have solved for sin x. You want to find x. You need to go another step.

- You are looking for the angle whose sine is ¹/₂
- Use QRS to help...

$$\sin x = \frac{1}{2}$$

O:

Q: R:

- S: \leftarrow You get S first...it is positive since $\frac{1}{2}$ is not $-\frac{1}{2}$
 - Now that you know S, you ask, "What quadrants is sin positive? • Quadrants I and II
 - Calculate R: The angle whose sin is ½? (Ignore + or now)
 - $\circ 30^{\circ}$
 - You can use your calculator to measure
 - Then calculate the angle in each quadrant based on the reference angle: Quad I: 30
 - Quad II: 180-30 = 150

So x = 30 and 150

Examples: Solve 1. $3 \sin x - 2 = 5 \sin x - 1$

2. $\tan 3x = 1, 0 \le x \le 2\pi$

1 2

3.
$$\sin\frac{x}{2} = \frac{\sqrt{3}}{2}$$
 4. $\sin\frac{x}{3} =$

The equation may involve a quadratic or more than one trig function. If more than one trig function is involved, use the appropriate identity or formula to substitute:

Ex. Solve each of the following for $0 \le x \le 2\pi$ 1. $4\sin^2 x - 1 = 0$ 2. $\cos^2 x + 3\cos x - 1 = 0$

3. $3\sin x = 2\cos^2 x$ 4. $\cos 2x + \cos x = 0$

5. $\tan x \sin^2 x = 3 \tan x$ 6. $2 \cos 2x \sin 2x + \cos 2x = 0$

7. $2\cos^2 x + 3\sin x = 0$ 8. $\cos 2x + 3\sin x - 2 = 0$

9. $\sin x \cos x = \frac{1}{2}$ 10. $\sin x - \cos x = 1$

If the angle is not a known value, use the inverse trig functions on your calculator to get the angle.